記事テンプレート
コンジョイントクラスタリングについて
アンケート調査回答者の集団の中には、志を同じくする人々のグループがある。これらのグループ(クラスタ)は、各回答者の最適なパッケージがどの程度似ているかによって決定することができる。各属性に対する個々の効用に基づいて回答者をクラスタ化することで、サブポピュレーションと、そのサブポピュレーションを構成する属性を決定することができる。
クラスタ化のためのアンケート調査の準備
コンジョイント・クラスタリングを使用する前に、コンジョイント・プロジェクトのアンケート調査が正しい質問をしていることを確認する必要があります。つまり、データを収集する前に特定の機能を設定する必要がある。
アンケート調査タブで、ノンジョイントブロックに質問が追加されていることを確認します。以下の例では、Demographicsブロックに年齢、回答者の世帯人数などの質問があります。
Demographicsブロックはコンジョイントブロックのすぐ上にあるが、好きなように動かすことができる。
質問のフォーマット
単一回答の多肢選択式問題でのみコンジョイントクラスタリングを実施できます。それは、簡単に分析できる選択肢を提供しているからである。開始日、IP アドレス、受信者情報など、アンケートのメタデータを使用することもできます。
- 人口統計:年齢、所得層、人種、性別など、基本的な記述情報を尋ねる。
- 行動:顧客のブランドや製品への接し方、あるいは購買実態に関連する行動を尋ねる。例えば、顧客が買い物に行く頻度を尋ねることができる。
- 運用 データ:これは、ウェブサイトでの滞在時間や従業員の勤続年数などの情報です。
- 質問の形式: 質問の動作や信念を尺度として書式化する。Yes/Noや単一選択の質問は、クラスタ分析にはあまり役に立ちません。
例あなたはどのような買い物をしますか?”と質問し、”ショッピングモールで買い物をするのが好き”、”オンラインで買い物をするのが好き”、”ブティックで買い物をするのが好き “という選択肢を与えた場合、クラスタリングアルゴリズムは回答者を3つのグループに分け、それぞれの回答に対して1つのグループとします。例えば、”ショッピングモールで買い物をするのが好きですか?”といったように、1~7までの回答で質問すれば、クラスタリング・アルゴリズムは、買い物客同士を区別するポイントをより的確に見極めることができるだろう。
クラスタを可能にする
- コンジョイントのレポートタブに行く。
- コンジョイントクラスタリングを選択します。
- 初めてこのタブにアクセスするときは、クラスタ計算を開始するためにRefreshをクリックする必要があるかもしれません。
クラスタに使用される人口統計の調整
デフォルトのコンジョイントクラスタリングでは、作成したすべての多肢選択式アンケートの質問を使用します。しかし、使いたくなければすべての質問を使う必要はなく、コンテンツを追加したり削除したりして、この機能があなたにどのような異なるクラスタを勧めるかを確認することができる。
デモグラフィックの追加と削除
クラスタの詳細ヘッダの右側のボックスで、質問を選択してクラスタ分析から追加または削除します。質問を削除してもクラスタは再計算されません。
推奨されるクラスタ
十分なデータを収集し、コンジョイント・クラスタリングのページをリフレッシュすると、この機能はあなたにクラスタを推薦する。これらのクラスタは、回答者の最適なパッケージがどの程度似ているかに基づいて決定される。 各属性に対する個々のユーティリティが計算され、これらのクラスタに共通する属性が強調表示されるため、異なる集団がどのように製品を好むかをより深く理解することができます。
上のグラフでクラスタを強調表示すると、そのクラスタの詳細を見ることができます。クラスタをクリックすると、以下のクラスタの詳細が表示されます。
クラスタの詳細
- サマリー:クラスタの詳細の一番上のバーには、どのクラスタであるか、クラスタの統計的有意性、回答者が一般的にどのように人口統計学的質問に回答したか、このクラスタに含まれる回答の数、このクラスタに適用される回答の割合など、最も重要な詳細が簡単に要約されています。また、この部分をクリックすると、RESTの残りの情報を展開したり折りたたんだりすることができる。
例写真のクラスタ1では、回答は年収5万~5万9999ドルで、アパートを借りている独身者が多い。クラスタの強さは弱く、統計的に有意なクラスタではないことを意味する。一般的にこのパターンに当てはまる回答者は7人で、これはデータセット全体の77.8%にあたる。これは非常に小さなデータセットであるため、この結果に基づいて決定を下すべきでないと思われる。
- 人口統計: このクラスタのメンバーが人口統計学的質問にどのように回答したかを示す一連の内訳棒グラフ。各内訳棒グラフは、最適パッケージの属性に対する効用スコアと最も相関の高い回答によってラベル付けされているが、クラスタ内の人々の回答方法はさまざまであることがわかるだろう。
例クラスタ1が希望する住まいはアパートである。しかし、このクラスタでは、アパートメントは最も一般的な選択肢としてリストアップされていない。それは、アパートメントに住んでいる人たちは、クラスタ内の異なる居住形態の人たちよりも、1500ドルで2週間のジャマイカへのバケーションを最高のパッケージとして選んだ可能性が高いからである。
- 最適パッケージ:クラスタのメンバーにとって最適なパッケージです。強調表示された属性は、ここで選ばれた属性に対して高いユーティリティスコアを持っている。
- プレビュー分析とシミュレートパッケージ:これらのボタンをクリックすると、このクラスタのデータのコンジョイント結果とシミュレータのみが表示されます。
クラスタ強度の決定
クアルトリクスは、シルエットスコアリングと呼ばれる指標を使用して、各クラスタの強さを決定します。このスコアは、回答者がどの程度クラスタ化されているかを決定する0から1の間の値を生成します。シルエットスコアからクラスタ強度への変換には以下の表を使用する:
相関スコア | 関係の強さ | クラスタ強度ラベル |
0.71 から 1.0 | 非常に強い関係 | 強い |
0.51から0.70 | やや強い関係 | やや強い |
0.26 から 0.50 | やや弱い関係 | やや弱い |
0~0.25 | 有意な関係なし | 弱い |
レポートとシミュレータへのクラスタの適用
クラスタは、コンジョイント結果とシミュレータに適用することができ、このクラスタの回答者が提示された属性をどのように評価したかについて、より具体的な詳細を見ることができます。
コンジョイント分析レポート
レポート・タブのコンジョイント分析セクションで、左上のドロップダウンからクラスタを選択します。
レポート・タブのコンジョイント・クラスタリング・セクションでクラスタを選択しているときに、プレビュー分析を選択することもできます。
シミュレータ
シミュレータ]タブで、右上のドロップダウンからクラスタを選択します。
レポート]タブの[コンジョイントクラスタリング]セクションでクラスタを選択している場合は、[パッケージのシミュレーション]を選択することもできます。